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Abstract. A Hopfield-type neural network that can store ultrametrically organised patterns 
with a finite magnetisation, or bias, is studied. Both the patterns and their ancestors are 
remembered in one network. A homogeneous field (or threshold) is included in the model. 
In zero field the (replica symmetric) mean-field equations map onto those of the Hopfield 
model, implying that transition temperatures, storage capacity, etc, are the same. By varying 
appropriately the field and/or a constant added to all the synaptic strengths, i t  is possible 
to climb up and down the hierarchical tree or to focus on a certain level in the hierarchy 
and thereby increase the capacity slightly. 

1. Introduction 

The Hopfield model [ 11 of associative memory in neural networks is today reasonably 
well understood. A major breakthrough came with the mean-field theory (MFT) of 
Amit et a1 1121, who managed to calculate various critical quantities, e.g. the load 
capacity a,( T ) ,  which is the maximum number of stable memories at temperature T 
divided by the number of spins (or neurons) N. 

One of the drawbacks of the Hebb prescription used for the synaptic strengths in 
the Hopfield model is that only a very limited number of correlated patterns can be 
memorised before they ‘destroy each other’. Therefore several groups have studied 
other rules that are capable of storing a particular kind of correlated pattern [3-81. 

Kanter and Sompolinsky studied a very general rule [7], proposed by Personnaz 
et a1 [9,10], that can store any set of linearly independent patterns, but at the cost of 
being fairly complicated and very unbiological in its general form. By using this 
approach we have proposed a storage rule for ultrametrically correlated patterns [3] 
which is a simple generalisation of the Hebb rule. Parga and Virasoro [8] and Feigelman 
and Ioffe [6] have found similar results from different arguments. 

Ultrametric organised patterns are interesting for several reasons. First, one may 
argue that memory is often intrinsically hierarchical, lending itself naturally to ultra- 
metric encoding. Second, a layered structure of the perception system may lead to 
ultrametric organisation of memories, as discussed by Parga and Virasoro [8]. Third, 
the ultrametric structure of the SK spin glass makes it interesting to study other systems 
with this structure. 

In this paper we apply the mean-field theory (Amit’s recipe) to a class of ultrametri- 
cally organised memories. These patterns can have a finite magnetisation; this is 
motivated by the fact that in real brains most of the neurons are passive at any time. 
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Very interesting results on magnetised networks have been obtained by Amit et al 
[4] on patterns with the same overlap between any two patterns (hierarchy with one 
level). This has been generalised by Gutfreund [5] to a hierarchy of patterns in a 
layered structure of networks. The present paper can be seen as a supplement to those 
works. We have especially concentrated on the effect of a homogeneous external field 
on the network, which in a sense corresponds to their notion of ‘constrained dynamics’. 

Gardner et a1 [ l l ]  (see also [12]) have calculated the maximum storage capacity 
of networks with or  without magnetisation (with asymmetric couplings allowed). For 
zero magnetisation this maximum capacity is a ,  = 2 (and larger when magnetisation 
is different from zero) which is substantially higher than the capacity of the Hopfield 
model ( a ,  = 0.14) and  also higher than for models using the pseudo-inverse method 
( a c =  1) [7]. There are no explicit solutions for the optimal couplings but iterative 
algorithms exist [ l l ,  121. 

This work is in a sense complementary to the approach taken in these rules. The 
starting point is a relatively simple storage rule derived by the pseudo-inverse method. 
Our aim is to study the effect of variations of macroscopic parameters, rather than 
simply to maximise the capacity. 

1.1. A storage prescription fo r  ultrametric patterns 

The p patterns are organised in an  ultrametric structure of 1 levels [13]. To identify 
a pattern we use 1 numbers ‘yl . . . a/ = til, describing the way to go in the hierarchical 
tree. If two patterms t6,, 5’‘ have their nearest common branching point at level m 
(i.e. a 1  = P I , .  . . , a ,  = Pm and amTl # the overlap is 

where k,  is the number of patterns in the groups at level m ( p  = k,,). 

present notation it is 
We have recently proposed a storage rule for this type of hierarchy [3]. In the 

where 7, are the eigenvalues of the overlap matrix Q: 

1.2. Outline of the paper 

In the next section our model is presented. The way we build the hierarchical tree is 
described and  the storage rule is generalised to incorporate a field. 

Section 3 concerns the mean-field theory (MFT). The replica formalism is employed 
and  saddle-point equations for the order parameters are found. In the end we restrict 
ourselves to the replica symmetric theory. 
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Finally, 0 4 is devoted to the retrieval states and, in particular, the storage capacity, 
a,( T = 0), under different circumstances. In addition, the critical temperature is con- 
sidered. 

2. The model 

2.1. Generating the ultrametric structure 

The ultrametric structure can be generated by an inhomogeneous Markov process 
[8, 131. The one described here is similar to one proposed by Parga and Virasoro [8] 
and Feigelman and Ioffe [6] and has also been used by Gutfreund [ 5 ] .  

First the 'oldest' ancestor state is generated. This determines the probability 
distribution for its descendants, the second oldest ancestors. They determine the 
probability distribution for the next generation and so on. When the branching ratio 
goes to infinity the mean values 5"111 (in equation (3)) become equal to these ancestors. 
Therefore the ancestors are also called  hopefully this will not cause confusion. 

The process looks as follows: 

E:= a, for all i ('oldest' ancestor) 
p(5"m"m+i = *a,+1)5"m) =I( 2 1 * 5"" ' /am+,)  ( 5 )  

where 
0 s  a,< a, < . . . < a, = 1. 

Here we have chosen positive a, but they could just as well be negative. 
It can easily be shown that 

((5",-1)) = a, ( 6 )  
((5 "","",+1"'* '5"~,,~, , ,+, . . .~~))= a, 2 ( 7 )  

where (( )) is an average over the probability distribution of the patterns (5). Equation 
( 7 )  tells us that the overlap between two states with nearest common ancestor at level 
m is 

Qm = a i .  (8) 
When the number of patterns is finite and N + m ,  fluctuations in these overlaps 

will be suppressed. But when a = p /  N is finite (as N + CO) this is not the case, and 
the fluctuations will add up and act as a noise-exactly the situation in the Hopfield 
model [ 2 ] .  

2.2. Injinite branching ratio 

In the following mean-field analysis it is assumed that the branching ratio at each 
branching point goes to infinity, i.e. k,/ k,,, + W .  This can be done by putting 

and let b (the branching number) go to infinity. It is now obvious that the mean value 
,$"I#> tends to the ancestor as b + m .  

k ,  = b'-" (9) 

Note that the eigenvalues (4) of the overlap matrix become 

lim ( v o )  = koa: (a0 + 0 )  
b - x  
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In this limit our storage rule (3) is identical to the one of Parga and Virasoro [8], 
as is shown in [3]. 

2.3. Storage prescription 

Using these results ((6) and  (10)) the first term in our prescription for the couplings 
(3) becomes a constant, 

where the 6 notation should be clear. 
In  the following analysis a homogeneous external field h is included. This field is 

(except for sign) equivalent to a firing threshold of the neurons. Now the local field 
becomes 

h, = J,,S, + h. (12) 
J 

The original rule ((3) or (1 1)) was derived with the assumption that h = 0 and it 
is therefore natural to modify it by including the field in its derivation. This is done 
in the way proposed by Personnaz et a1 [9, lo], which is also the basis for (3). For a 
memory to be stable the local fields in this state must be parallel to the spins. That is 
ensured by requiring 

where the 'final' patterns are now numbered from 1 to p. (In [ l l ,  121 this rather 
restrictive equality is replaced by an  inequality saying that the local field times the 
spin should be positive.) 

Now the two N x p  matrices E and E are introduced, where all elements in E are 
1 and E = (tl, (*,. . . , tp)). Equation (13) is now written in the following way: 

J E +  hE = Z (14) 
which is solved for J :  

J = E E f  - h E S f  

where E' is the pseudo-inverse [lo], 
; ; I  I = ( ETz)-lZT = ( 1,' N) Q-'ET 

The first term in (15) is the one that gives J ;  (3), the second becomes (for the 
ultrametric case) 

Finally, the J matrix is 

Unless all 6; are equal this matrix is asymmetrical. In the present work all the 6; 
are equal to a,, when the number of patterns are large, so J,, is symmetric and becomes 

(19) J,, = J i  - h /a , .  
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Now we introduce a parameter c in the first term of the original storage prescription 
(1 l ) ,  so the rule becomes 

The first term describes a contribution to the bond strengths which is the same for all 
pairs ( i, j )  of spins. This contribution is ferromagnetic or antiferromagnetic depending 
on the sign of c. In our previous rule (3), derived for zero external field, this interaction 
was ferromagnetic ( c  = l ) ,  but it need not be for sufficiently large field: our new rule 
(19) corresponds to c = 1 - h/a, .  ( c  = 0 corresponds to the case of unconstrained 
dynamics of Amit et a1 [4] and c = - h / a ,  to their constrained dynamics.) 

Although the rule we have derived in this section prescribes a particular value of 
c (1 - h/a,)  for a given external field, in subsequent sections we will vary c and h 
independently and see how the capacity is affected. 

It would be natural to vary the other coefficients in the storage prescription around 
the value, k m / T m ,  given by our rule (as Feigelman and Ioffe do [ 6 ] ) ,  but for the sake 
of simplicity we only vary c and the field h. 

2.4. Stable ancestor states 

In the limit of large branching ratio the average states are identical to the ancestor 
states, as discussed in § 2.2, so i $ ~ ~ ~ l  = a,,,. Set 

then limb+= ( lap" t1)  = 1. 
Linear combinations of the 'final' patterns (those at level I )  which have elements 

+1 or -1, like (21), are stable states on the same footing as 6"'. This is a result of the 
construction of J,, (3), as discussed by Kanter and Sompolinsky [7] and noticed also 
by Parga and Virasoro [8]. 

This means that the ancestor patterns represented by (21) are also remembered in 
this model. We will see that by tuning the parameters c and h it is possible to focus 
on ancestors at different levels of the hierarchy. 

3. Mean-field theory 

3.1. Replica calculations 
This analysis follows closely Amit et a1 [ 2 ] .  

The Hamiltonian becomes 
H = - +  1 J,JS,SJ + He,, 

1'1 

where Hk is constant (in the limit of large N) and H e x ,  represents external fields. An 
external field is put on some patterns (or ancestors) ('111, Cm E A, in the following way: 

(these fields will look less strange when we introduce the order parameters). 
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The replica method [2] is used to calculate the free energy. The moments of the 
partition function 2 are 

+@( 2N s:)2]]). 

With the help of a Gaussian integral identity this can be transformed to 

P 

xexp[ -PN 

(25) 

The prime means that the sum is over all condensed patterns, cim E A, and a double 
prime means a sum over the rest. 

3.2. Order parameters 

When N + CO the saddle-point approximation can be used on the integral of (25). The 
saddle-point equations give 

So the y order parameter is just the magnetisation per spin times dc. 
The other order parameter is a generalised overlap with some nice properties. 

Assume the system condenses into one state tp,, i.e. ( S i ) = x # \ ,  then it is found from 
(26) and (10) that 

It then follows from (7) that 

i f m s s a n d a  ,,..., a,=p , , . . . ,  P m  
otherwise. 

Putting this in words: if t * ~ ~ l  is an ancestor of (or equal to) .$', then x ' ~ ~ ~  is equal to x, 
otherwise it is equal to zero. 
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The system condenses into some states G m  E A, xa"i # 0. Then the average (( )) in  
(25) over the rest can be done. This averaging is done in the appendix, and the result 
is identical to the one obtained in the Hopfield model [2]. Therefore one can introduce 
the familiar order parameters qpm and r,,, use the saddle-point approximation and 
immediately write down the free energy per spin: 

where we have now put h"i81 equal to zero as they are not needed any more. The sums 
in (30) are only over the condensed patterns and A ,  are the eigenvalues of the matrix 
S,, - Pqpv, where 

and 

3.3. Replica symmetric theory 

The replica symmetry assumption is 

Y P  = Y (33) x%,% = x",,, 

r,, = r qpu = 4 (P # U ) .  (34) 
Now letting n go to zero in (30) gives an expression for the free energy (again the 

calculations are identical to the Hopfield case): 

(35) 
The variation o f f  with respect to the order parameters gives the saddle-point 

equations (the Gaussian average is included in (( ))): 

(38) 

(39) 
where M is the magnetisation per spin. 
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Based on experience from other applications [2,5] we expect that the replica 
symmetry approximation works fairly well, with only small errors at low temperatures. 
This is confirmed by numerical simulations. 

4. Retrieval states 

4.1. Order parameter equations 

The order parameters for the retrieval states are of the form given by (29). To study 
the retrieval of a pattern on level s we sum from m = 1 to s on both sides of (36) 
and get 

x (u f  - U ; )  = (((["> - a,) tanh p[& z+x(("\ - U,)+ cM + h])) (40) 

M = ((tanh p[& z + x(["' - ao) + cM + h])) (41) 

q = ( ( t a n h 2 p [ 6 z + x ( [ " . - a o ) + c M +  h])) (42) 

and r given by (39). 

This is more obvious when (40) is written in the following way: 
The structure of these equations is the same for patterns at all levels in the hierarchy. 

(43) 

with (41) and  (42) similar. xu, lies between zero and unity (it is shown below that it 
is the overlap) and  ps = ao/a, is the magnetisation of the normalised states 8,. So, 
as a function of p,, a, h and c, all properties are the same for states at different levels. 

As mentioned before (0 2.3) the ancestor patterns 8 7  are as stable as the 'final' 
patterns U"! (= 5"'). This is a consequence of the way the storage prescription is 
derived. Therefore it is not very surprising that (40)-(42) are almost identical for 
patterns at  different levels of the hierarchy. 

(a,x)( 1 - p:)  = (( ( u " s  - pus) tanh p[& z + (xu, ) (  U"' - p s )  + cM + h])) 

In the limit of zero temperature the saddle-point equations become (see [ 2 ] )  

1 
( [ " > - - a o )  e r f ~ [ x ( [ " \ - u , ) + c M + h ] )  (44) 

1 
erf ~ [ x ( ( " >  - ao) + c M +  h]) (45) 

c = p ( 1 -  q )  = (2) "*(( exp( --[x(["\ 1 - a,) + CM + h]' 
TCY r 2ar 

r = 1/(1- c)'. (47) 

If c = 0 we arrive at the equations of Amit et a1 [4] (the unconstrained dynamics), 
and when c = - h / a  it is equivalent to the case of constrained dynamics. 

4.2. h = 0, c = 1 

As mentioned before, the case c = 1 corresponds to our original couplings J; .  
If 

x = x ( a, - a,) + M Y = -x(a ,  - ao)+ M (48) 
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the average over the patterns in (40) and (41) can be performed (using (5)) and we get 

x = ( l / 2 a 5 ) ( t a n h P ( & z + X ) - t a n h P ( & z +  Y ) ) z  (49) 
M = (f( 1 + a,/a,) tanh P(& z + X )  -$(l  - a,/a,) tanh P ( 6  z + Y) ) : .  (50) 

(51) 

(52) 

(53) 

From this it is found 

X = (tanh P(& z + X)),  

Y = (tanh p ( 6  z +  Y ) ) z .  

M = a,x = a,X/a,. 

The solution X = Y does not fit (48), so we must have X = - Y, and (48) then gives 

This important relation says that when x is maximum (x = a ; ' )  then M = a,/a,, 
which is the magnetisation of the normalised state u"-' (= E"' when s = I ) .  When the 
temperature rises and x decreases, M follows it linearly. This drift towards lower 
magnetisation is due to 'the force of entropy'-the system seeks a higher density of 
states. It hints that a field to lean against would increase the stability of the patterns. 

If X is introduced in equation (42) we get 

q = ( t a n h * p ( & z + X ) ) , .  (54) 
Now (51), (54) and (39) are identical to the retrieval state equations of the Hopfield 
model [2], when X plays the role of the overlap. From (26), (48) and (53) it is easily 
seen that X is indeed the overlap with the normalised patterns (3": 

1 
N i  

x = - U:,( S,). (55) 

Anything that is found for the retrieval states of the Hopfield model (in zero fields) 
therefore also apply to the retrieval states (and ancestor states) in this case. The only 
difference is the magnetisation, which is zero in the Hopfield model and given by (53) 
in our case. 

For example, the load capacity a,( T )  is the same, and the zero-temperature value 
in particular is 

a,( T = 0) = aFoP = 0.138. 

This result was also found by Feigelman and Ioffe for zero magnetisation [6]. 

4.3. h > 0 

When the overlap decreases, the magnetisation follows it. So one could try to put on 
a field to keep the magnetisation of the system constant. 

Solving equations (44)-(47) numerically for a,(O) with c = 1 and s = I gives the 
dependence of a,(O) on h shown in figure 1 for some values of a,. For large a,, a ,  
can be raised considerably. This shows that the pseudo-inverse method does not 
necessarily give the highest capacity. 

Choosing J,, according to (18) means 

c =  1 - h / a , .  (56) 
The effect on a ,  is shown in figure 2 (full curves). These curves all stabilise around 
h = 10 and for high a we even see a maximum. When h is high this is like putting a 
potential well (parabolic) around magnetisation M = a,, and is equivalent to the 
constrained dynamics of Amit et a1 [4]. 
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Figure 1. The dependence of CY, on the field h at zero temperature and c = 1 for different 
values of a, .  

0.13 1 I 

0 10 20 30 40 50 
h 

Figure 2. cyc as a function of h ( T  = 0). The full  curves correspond to c given by (56) and 
the broken curves to c given by (57). 

From figure 1 we have found that the highest cy, occurs around h = 0 . 2 ~ ~ .  A field 
of this size balances the drift towards smaller magnetisation. Instead of (56), which 
can be written as h = a,( 1 - c),  we will therefore try h = a,( 1 - c )  + 0 . 2 ~ ~  or equivalently 

c = 1 . 2 - h / a o .  (57 )  
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In figure 2 a ,  is also shown for this choice of c, h (broken curves). The curves are 
almost horizontal lines, so picking a pair c, h according to (57) will always give a 
near-optimal value of a,. 

This way of stabilising patterns is much more flexible than constraining the dynamics 
to a small part of phase space. It shows that for better storage capacity it is more 
important to balance the drift towards lower magnetisation than to impose constraints. 
(On the other hand constrained dynamics may have some advantages, because it 
destabilises some of the spurious states.) 

4.4. Transition temperatures 

The different levels of patterns in the hierarchy may have different critical tem- 
peratures-say T,  for level m-for the transition from the retrieval phase to the 
spin-glass phase. 

When c = 1 and h = 0 all the retrieval states have the same free energy. But when 
c and h change according to (56) for example, the energy of any state with magnetisation 
different from a, is raised. This is most easily seen from the Hamiltonian (22) :  

where c has been fixed by (56) according to (19). The minimum of the last term is at 
M = a,. The transition temperatures will in this case increase with level number: 
To < T,  < . . . < T,, because the magnetisations of the states on higher levels are larger 
than a,. 

0.8 1 I I 

0.7 1 

0.6 

T,  0 . 5  

0.4  

0.3 

I 
I 
i 

1 

0.2 I , , 
0.5 0.6 0.7 0.8 0.9 1.0 

P S  

Figure 3. The critical temperature, Tc,  as a function of magnetisation when c is given by 
(59). f i ,  = a o / a ,  is the magnetisation of an ancestor state and p$,, is the magnetisation of 
the level in focus (ao = 0.5, a = 0.05, h = 1.0, c = 1 - h / f i * , ) .  
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Similarly, one can pick out patterns at a particular level s = so by setting 

c 2 1 - h / p i o  (59) 

where pso is the magnetisation of the normalised states (+‘?o, ps,, = a, /a , , .  This will lead 
to transition temperatures To < . . . < T,, and T,, > . . . > T,. 

In figure 3 we show an example where the mean-field equations have been solved 
numerically to find the critical temperature for specific values of a,, h, cy, pia. The 
figure applies to a hierarchy with any number of levels. 

If c is kept fixed it is possible to focus on different levels of the hierarchy by tuning 
the field h according to (59) ( h  = p7(l - c ) ) .  If h is high ( h  > 1 - c )  it is most likely 
that the system ‘sleeps’: (SF)= 1 for all i. When h is gradually lowered (and T>O) 
the system can climb down the hierarchical tree and find more and more detailed 
information. 

5. Discussion 

The network described here is capable of storing hierarchically correlated magnetised 
patterns with a storage capacity ( c y c )  at the same size as-or a little higher than-that 
of the Hopfield model. Both the patterns and their ancestor states (group averages) 
are remembered in one network, which is different from the model of Gutfreund [5], 
where I identical networks are used to do the same. 

The model contains two important parameters c and h. c is a constant added to 
all the synaptic strengths, so it is analogous to a uniform ferro- (or antiferro-) magnetic 
interaction between all pairs of spins, and h is equivalent to a threshold of the neurons. 
The pseudo-inverse method gives a simple connection between c and h but we have 
shown that a small departure from that may increase the storage capacity of the 
network. This is in agreement with the results of Gardner and others [ l l ,  121. 

This system is very flexible. By tuning the parameters p, h and c it is possible to 
‘focus’ on different levels of the hierarchy. Therefore, by varying h for example, it is 
possible to climb up and down the hierarchical tree. 

It is not necessary to constrain dynamics to states around a certain value of 
magnetisation to get a high storage capacity. But constraining of any strength is 
possible-again by tuning c and h-and it actually excludes a lot of spurious states 
[4]. This easy way to get rid of spurious states is one reason that could make these 
magnetised networks interesting for applications. 

For practical use and biological relevance there are obvious difficulties with a model 
like this. To the well known difficulties of the Hopfield model we have to add at least 
two. First, to learn something new it must fit into an existing group, or one has to 
teach the network a whole new group (that must fit into the tree). Second, even though 
our brain may organise information in some hierarchical manner, the ultrametric 
structure is probably too rigid. 

Feigelman and Ioffe [6] did the mean-field calculation for this network ( c  = 1, 
h = 0 )  with zero magnetisation (a,  = 0) and found the storage capacity. It is a bit 
disappointing that the ultrametric structure does not lead to a higher storage capacity, 
as they point out, because of the analogy of the SK spin glass with an exponential 
number of stable states. On the other hand, it is clear from the approach taken here 
that c y c <  1 because the patterns have to be linearly independent [3]. 
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Appendix 

In this appendix we calculate the average over the non-condensed states in (25). It 
takes the form 

(z,, e x p ( d " ~ ~ l S " ~ ~ ~ )  ( a i  - ui-,)(d"fpl)2). ('42) 

Combining (Al)  and (A2) and including the quadratic term (x2)  from (25) yields 

Here (10) is used. Integration of (A3) gives 

where A, are the eigenvalues of 

P 
N i  

Apr=8po. - -C  SPS:. 

If k, = b'-" then 

lim C p / k ,  = lim C 5" = b ' = p  
h-oo , b-cc , 
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so finally (A4) can be written: 

This expression is exactly the same as one finds in the Hopfield model [2]. 
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